
Workshop on Asynchronous Many-Task Systems
2025

Venue:
Saint Louis University

February 19-21, 2025

This workshop is sponsored by

• Saint Louis University

ii

Abstract
As our compute capacity grows, science simulations are not only becoming bigger,
but more complex. Simulations are carried out at multiple scales and using multiple
kinds of physics at once. Boundaries are irregular, grids are irregular, computational
domains can be dynamic and complex. In such scenarios, the ideal way to parallelize
often cannot be statically determined. At the same time, hardware is becoming
more heterogeneous and difficult to program. Increasingly, scientists are turning
to asynchronous, dynamic parallelism in order to make the best use of increasingly
challenging hardware. As a result, numerous frameworks, platforms, and specialized
languages have sprung up to answer this need.

The objectives of this workshop are to bring together experts in asynchronous
many-task frameworks, developers of science codes, performance experts, and hard-
ware vendors to discuss the state-of-the-art techniques needed to program, analyze,
benchmark, and profile these codes to achieve maximum performance possible from
modern machines. This workshop will promote a dialogue between these commu-
nities, and help identify challenges and opportunities for advancement in all the
disciplines they represent.

Organizing committee
• Patrick Diehl, Los Alamos National Laboratory (USA)

• Qinglei Cao, Saint Louis University (USA)

Scientific committee
• Alex Aiken, Stanford (USA)

• Erwin Laure, Max Planck Computing & Data Facility (Germany)

• Christoph Junghans, Los Alamos National Laboratory (USA)

• Bryce Adelstein Lelbach, NVIDIA (USA)

• Laxmikant V. Kale, University of Illinois at Urbana-Champaign (USA)

• Brad Chamberlain, HPE and University of Washington (USA)

• John D. Leidel, Tactical Computing Laboratories (USA)

Technical program chair
• Patrick Diehl, Los Alamos National Laboratory (USA)

• George Bosilca, NVIDIA (USA)

• Thomas Herault, University of Tennessee, Knoxville (USA)

iii

• Qinglei Cao, Saint Louis University (USA)

Technical program
• Kevin Huck, University of Oregon (USA)

• Dirk Pflüger, University of Stuttgart (Germany)

• Huda Ibeid, Intel

• Dirk Pleiter, KTH Royal Institute of Technology (Sweden)

• Didem Unat, Koç University (Turkey)

• Keita Teranishi, Sandia National Laboratories (USA)

• Gregor DaiSS, University of Stuttgart (Germany)

• Najoude Nader, Louisiana State University (USA)

• Weile Wei, Lawrence Berkeley National Laboratory (USA)

• Jeff Hammond, NVIDIA (Finland)

• Hartmut Kaiser, Louisiana State University (USA)

• J. Ram Ramanujam, Louisiana State University (USA)

• Steven R. Brandt, Louisiana State University (USA)

• Narasinga Rao Miniskar, Oak Ridge National Laboratory (USA)

• Markus Rampp, Max Planck Computing and Data Facility (Germany)

• Sumathi Lakshmiranganatha, Los Alamos National Laboratory (USA)

• Nikunj Gupta, Amazon (USA)

• Jonas Posner, University of Kassel (Germany)

• Chris Taylor, Tactical Computing Laboratories (USA)

• Aurelien Bouteiller, University of Tennessee, Knoxville (USA)

• Joseph Schuchart, University of Tennessee, Knoxville (USA)

• Rabab Alomairy, Massachusetts Institute of Technology (USA)

• Julian Samaroo, Massachusetts Institute of Technology (USA)

• Wei Wu, NVIDIA (USA)

iv

Logistics
• Andrew Flanagan, Saint Louis University (USA)

• Qinglei Cao, Saint Louis University (USA)

v

vi

Welcome Address

Greetings,

It gives me great pleasure to extend a warm welcome to all participants of the
Workshop on Asynchronous Many-task Systems and Applications, scheduled from
February 19 to 21, 2025. The event is being hosted by the Computer Science De-
partment at Saint Louis University. I am delighted to announce our support and
co-sponsorship of this workshop.

I would like to express my appreciation for the exceptional efforts of the workshop
organizers: Dr. Qinglei Cao and Dr. Patrick Diehl. The primary objective of this
workshop is bringing together experts in asynchronous many-task frameworks, sci-
entific code developers, performance engineering specialists, and hardware vendors
and to create an environment where discussions and new ideas flourish. Our aim is
to facilitate discussions on cutting-edge techniques necessary for the development,
analysis, benchmarking, and profiling of task-based applications to achieve opti-
mal performance on modern architectures. This workshop serves as a platform for
fostering dialogue among these communities, identifying challenges, and exploring
opportunities for advancement across various disciplines.

A special thanks goes to our distinguished keynote speakers: Prof. Alan Edelman
from Massachusetts Institute of Technology, Dr. Christian Trott from Sandia Na-
tional Laboratories, and Dr. Hatem Ltaief from King Abdullah University of Science
and Technology. Their expertise in the field promises valuable insights, and we are
grateful for their willingness to share them with us. Finally, I extend my gratitude
to all participants. I sincerely hope that you find enjoyment and benefit from the
unique discussions and sessions planned over the next two and a half days.

With best wishes,
Min Choi Ph.D.
Professor and Chair of Computer Science
Saint Louis University

vii

viii

Contents

Welcome Address vii

Session Chairs 1

Talks 3
Keynote I: Improving the HPC experience, did Julia get it right or will AI

hide the problem (or both)? (Alan Edelman) 3
Contemplating a Lightweight Communication Interface for Asynchronous

Many-Task Systems (Jiakun Yan) 4
Comparing and Contrasting User and Runtime Directed Data Placement

Strategies for Owner-Compute, Multi-Accelerator Distributed Task
Based Scheduling (Aurelien Bouteiller) 5

Chplx an Asynchronous Many Task Runtime Foundation for Chapel (Shreyas
Atre) . 6

Supporting OpenMP Free Agents by Leveraging the nOS-V Threading
Library (Vicenc Beltran Querol) . 7

Futures in Task Graphs Extending Taskflow With Dynamic Data Depen-
dencies (Rüdiger Nather) . 8

Adaptively Optimizing the Performance of HPX’s Parallel Algorithms (Karame
Mohammadiporshokooh) . 9

Fail-stop Failure Protection for Coordinated Work Stealing of Tasks that
Communicate through Futures (Claudia Fohry) 10

Q-IRIS: The Evolution of the IRIS Task-Based Runtime to Enable Classical-
Quantum Workflows (Anthony Cabrera) 11

Keynote II: Task-Graphs: Why aren’t we all using them? (Christian Trott) 12
Type-level invariants for SPMD programming with Rust (Nafees Iqbal) . 13
Evaluating AI-generated code for C++, Fortran, Go, Java, Julia, Matlab,

Python, R, and Rust (Patrick Diehl) 14
Dynamic Resource Management: Comparison of Asynchronous Many-Task

(AMT) and Dynamic Processes with PSets (DPP) (Jonas Posner) . 15
Unifying the Architecture and Implementation of Task-Aware Libraries

(Amadeu Moya) . 16
Data Sparsity in Global and Compact Support Radial Basis Functions for

3D Unstructured Mesh Deformation (Rabab Alomairy) 17
A Task-parallel Pipeline Programming Framework with Token Dependency

(Cheng-Hsiang Chiu) . 18

ix

GPRat: Gaussian Process Regression with Asynchronous Tasks (Alexan-
der Strack) . 19

Julia-Unified Recursive Implementation of TRMM and TRSM for GPU
Acceleration (Maxwell Onyango) . 20

Keynote III: Chaos to Cosmos: Orchestrating Complex Scientific Applica-
tions with Dynamic Runtime Systems (Hatem Ltaief) 21

Scalable Block-Sparse Matrix Multiplication Using Template Task Graphs
(Joseph Schuchart) . 22

Leveraging Hardware-Aware Computation in Mixed-Precision Matrix Mul-
tiply: A Tile-Centric Approach (Qiao Zhang) 23

Posters 25
HPX+MPICH: Bridging the Gap between Asynchronous Many-Task Sys-

tems and MPI with VCIs and Continuation (Jiakunf Yan) 25

Additional information 27
Addresses . 27

Author Index 29

x

Session Chairs

• Keynote 1, Qinglei Cao

• Session 1 (Wed 10:30 – 12:00), Christoph Junghans

• Session 2 (Wed 1:00 – 2:30), Vicki Carrica

• Session 3 (Wed 3:00 – 4:30), Joseph Schuchart

• Keynote 2, Patrick Diehl

• Session 3 (Thu 10:30 to 12:00), Patrick Diehl

• Session 4 (Thu 1:00 to 2:30), Jiakun Yan

• Session 5 (Thu 3:00 to 4:30), Aurelien Bouteiller

• Keynote 3, Qinglei Cao

• Session 6 (Fr 10:30 to 12:30), Qinglei Cao

1

2

Talks

Keynote I: Improving the HPC experience, did Julia get it right or will
AI hide the problem (or both)? 19th

9:00 AM–10:00 AM

Alan Edelman
Massachusetts Institute of Technology

For years I was sad that not enough hard work went into making HPC much easier on
the human, and much more portable. I kind of felt that there was too much chasing
machoflops and not enough software engineering that would result in bringing more
programmers to HPC. My benchmark was how many undergraduates are using HPC
for interesting projects. Another observation was that it seemed infrastructure was
rarely funded or encouraged.

Julia has been and is making strides in this direction, but new to the table is
AI (something this tech lover turned luddite wanted to avoid always fearful this
bandwagon is going to collapse and collapse hard.) I will talk about the original
ongoing efforts and our SmartSolve (Funded by DARPA DIAL) project that we hope
will bring everything together for HPC. Most importantly we will encourage everyone
to participate; we can not do this entirely ourselves and value your contributions.

3

Contemplating a Lightweight Communication Interface for
Asynchronous Many-Task Systems19th

10:30 AM–11:00 AM

Jiakun Yan
University of Illinois Urbana-Champaign

AMTs exhibit different communication patterns than traditional HPC applications,
characterized by asynchrony, concurrency, and multithreading. Existing communi-
cation libraries usually do not support AMTs’ communication requirements in the
most direct and efficient ways. The Lightweight Communication Interface (LCI) is
an experimental communication library aiming to push for efficient communication
support for AMTs. This paper presents the design for a new LCI C++ interface
and its rationale. With a new C++ objectized flexible functions idiom, the new
interface aims for the following features: (a) a concise but expressive interface for all
common communication primitives and completion mechanisms, (b) a fine-grained
resource mapping scheme for library interoperation, multithreaded performance iso-
lation, and flexibility (c) a set of optional parameters and overridable classes for
users to fine-tune the runtime behavior incrementally.

4

Comparing and Contrasting User and Runtime Directed Data
Placement Strategies for Owner-Compute, Multi-Accelerator

Distributed Task Based Scheduling 19th
11:00 AM–11:30 AM

Aurelien Bouteiller
University of Tennessee Knoxville

The current dominance of accelerators in leadership class High Performance Com-
puting systems has motivated the emergence of the task-based programming style.
This programming model enables the dynamic execution and mapping of the com-
putation on computing resources and a greater asynchronous execution of tasks,
henceforce enabling the execution to reach a higher portion of the computational
peak. Another important aspect is the overlap between computation and the mo-
tion of data between nodes and memory hierarchies. The task-based programming
paradigm, as employed in the PaRSEC micro-task runtime system, enables the de-
coupling of the data distribution and mapping of computation to resources from
the base expression of the algorithm. As a consequence, it becomes easy to modify
these mappings and explore the performance impact between a number of strategies,
some automatic and runtime directed, and some user-directed. In this paper, we
focus on the comparison and contrast of different data placement strategies for the
owner-compute scheduling model in the context of split-memory accelerators–that
is, when host memory and accelerator memory are separate domains, or when ac-
cessing host memory through Unified Virtual Memory (UVM) incurs a significant
cost. We implement in the same algorithms (for example LLT Cholesky factoriza-
tion, tensor contraction, mixed-precision algorithms) three different strategies for
data and task mapping: a randomized first-touch policy that assigns data randomly
to an accelerator, a load-balancing strategy that assings data to the accelerator
with the lowest load, and we compare it to an user-directed strategy that minimizes
cross-accelerator traffic by placing tasks according to a cross-memory bandwidth
minimizing strategy. We also compare these strategies to using UVM to let the
hardware position data on-demand on the site of computation as a baseline. An im-
portant consideration that we take into account is the positioning of data received
from the network in distributed systems that are capable of depositing message
payload directly in accelerator memory, this is critical for example on the Fron-
tier system where network interfaces have closer affinity with accelerator memory
banks than host memory banks. Evaluation will be carried out on a variety of
multi-GPU accelerated systems (using the PaRSEC capabilities to schedule tasks
with CUDA, HIP, OneAPI), including the Frontier system. We finally discuss how
these strategies, including user-directed strategies can be implemented in a manner
that maintain the separation of concerns between expressing the correctness of the
algorithm and the mapping of tasks on resources.

5

Chplx an Asynchronous Many Task Runtime Foundation for Chapel19th
11:30 AM–12:00 PM

Shreyas Atre
lsu center for computing and technology

A previous study demonstrated Chapel and HPX yielded best performance with
respect to code complexity ratios for a 1 dimensional heat equation code. The study
showed that HPX has a code complexity gap with respect to Chapel. This paper
presents results of a study to close HPX’s code complexity gap by way of a new
source-to-source compiler called chplx. chplx converts Chapel to HPX application
software. The chplx compiler creates ISO C++ application code using a new ISO
C++20 library implemented using the HPX asynchronous many task (AMT) run-
time system. The new ISO C++20 library closely mirrors functionality found in
the Chapel programming language. The results of this study show performance and
code complexity ratios between Chapel and HPX measured across 3 benchmarks and
the COnstructive COst MOdel (COCOMO). The 3 benchmarks used for this study
are GUPS, Streaming Triad, and a heat equation kernel. Performance is measures
across 3 architectures: x86, aarch64, and risc-v (rv64g). Our performance results
demonstrate chplx can maintain high performance and close the code complexity
gap.

6

Supporting OpenMP Free Agents by Leveraging the nOS-V Threading
Library 19th

1:00 PM–1:30 PM

Vicenc Beltran Querol
Barcelona Supercomputing Center

The OpenMP 6.0 standard introduces the free-agents feature, which enables a more
dynamic execution model to improve application malleability and resource utiliza-
tion. With free-agents, idle threads within a parallel region can be dynamically
reassigned to execute tasks from other parallel regions. However, integrating this
feature into complex runtimes, such as LLVMs libomp, presents significant chal-
lenges due to its departure from traditional threading models.

This paper presents our implementation of free-agents within the LLVM libomp
runtime, which significantly reduces the complexity of implementing free-agents in li-
bomp by leveraging the nOS-V threading and tasking library. Moreover, nOS-V also
provides support for Task-Aware (TA) libraries and the co-execution of applications.
Our enhanced libomp runtime, ported on top of nOS-V (libompv), also leverages
these features. With libompv, OpenMP tasks and threads from any parallel region
can safely call TA libraries, and independent processes can be efficiently co-executed
to improve resource utilization or mitigate load imbalance issues. Experimental re-
sults show that libompv+fa delivers better performance than the original libomp
for load-imbalanced or co-executed applications, while introducing no additional
overhead for workloads that do not benefit from these new features.

7

Futures in Task Graphs Extending Taskflow With Dynamic Data
Dependencies19th

1:30 PM–2:00 PM

Rüdiger Nather
University of Kassel

Task parallel programming is a common approach to using modern multicore archi-
tectures efficiently. However, tasks can have dependencies that need to be accounted
for by the scheduler. Particularly difficult to handle are dynamic dependencies,
which may be discovered only at runtime. Dynamic dependencies can be expressed
with the future construct, which has several variants. Previous research on the LU
decomposition of hierarchical matrices suggested that futures should have properties
such as the ability to encapsulate other futures, and that of being movable to another
task for being filled. Such powerful future types have not yet been implemented in
current runtime systems.

This paper fills the gap and implements a powerful future type in Taskflow,
which is a parallel runtime system that supports, e.g., heterogeneous tasks, static
dependencies, and task-level control flow. We present our extension of Taskflow by
futures, show how futures integrate into the programming model of Taskflow, and
evaluate our implementation with the LU decomposition of hierarchical matrices.

8

Adaptively Optimizing the Performance of HPX’s Parallel Algorithms 19th
2:00 PM–2:30 PM

Karame Mohammadiporshokooh
Louisiana State University

Executors in C++ abstract concurrency management across diverse hardware archi-
tectures, simplifying development by providing a consistent interface for task execu-
tion. While this abstraction facilitates portability and uniformity of the user-facing
interfaces, it can also lead to performance inefficiencies by imperfectly matching the
workloads or by not fully leveraging specific hardware capabilities. To mitigate this,
dynamic optimizations can be incorporated into executors, enabling them to adjust
their behavior based on the supplied workload, code complexity, and hardware they
operate on, optimizing scheduling, resource allocation, and task distribution. We
developed a chunking (workload) optimization integrated into HPXs executor API
that dynamically determines optimal workload distribution and resource allocation
based on runtime metrics without introducing undue overheads. Evaluated within
the adjacent difference algorithm, this approach demonstrates improvements in ex-
ecution time and efficiency across various configurations and workloads, offering a
promising solution for improved parallel performance through a user-friendly API.

9

Fail-stop Failure Protection for Coordinated Work Stealing of Tasks
that Communicate through Futures19th

3:00 PM–3:30 PM

Claudia Fohry
University of Kassel

Modern supercomputers nowadays consist of millions of compute cores. This still
growing number increases the likelihood of process failures, making fault tolerant
programs essential, especially on clusters. Traditionally, fault tolerance is achieved
with Checkpoint/Restart (C/R), where process states are periodically saved to disk,
and a collective restart is performed after failure. This general-purpose approach is
transparent to application programmers, but incurs a high running time overhead.

The present paper, in contrast, deals with a specific fault tolerance technique for
Asynchronous Many-Task (AMT) programs, called task-level checkpointing (TC).
This technique is more efficient than C/R, and transparent to application program-
mers, as well. AMT programs divide the computation into tasks that are processed
by worker processes running on, e.g., different cluster nodes. For load balancing,
the workers often employ work stealing, in which idle workers steal tasks from other
workers. TC operates in the runtime system and saves the data of clearly defined
task interfaces instead of process states.

So far, TC has only been applied to restricted classes of AMT runtimes, chiefly to
runtimes with independent or nested fork-join tasks under cooperative work stealing,
i.e., victims participate in steals. This paper adapts the technique to a runtime with
task communication through futures under coordinated work stealing, i.e., thieves
directly take data from victim memory. We present and evaluate first checkpointing
algorithms for this setting, observing overheads of up to 12% at 1280 workers.

10

Q-IRIS: The Evolution of the IRIS Task-Based Runtime to Enable
Classical-Quantum Workflows 19th

3:30 PM–4:00 PM

Anthony Cabrera
Oak Ridge National Laboratory

Heterogeneous systems are ubiquitous and are growing to include even more di-
verse paradigms, such as quantum computing. This paper strives to design an
asynchronous task-based runtime solution that can encapsulate both classical and
quantum computing environments in the heterogeneous execution paradigm by ex-
ploring a few integration possibilities between the task-based runtime IRIS, the
quantum programming framework XACC, and the Quantum Intermediate Repre-
sentation Execution Engine (QIR-EE). The need for asynchronous task-based execu-
tion is motivated by examples that require the coexistence of classical and quantum
computing hardware. To show a proof-of-concept for motivating future study, we
describe the principles of integrating quantum runtimes with a task-based runtime
and demonstrate its capability of parallelizing quantum circuit execution by decom-
posing a four-qubit circuit into a collection of smaller circuits, which lowers the
quantum simulation load during execution. We hope that this will further high-
light challenges that we would need to overcome to make such a solution effectively
scalable while simultaneously capturing classical-quantum and quantum-quantum
interactions.

11

Keynote II: Task-Graphs: Why aren’t we all using them?20th
9:00 AM–10:00 AM

Christian Trott
Sandia National Laboratories

Task-Graphs are a very attractive concept to express complex algorithms, manage
asynchronicity and expose available concurrency. However, very few HPC appli-
cations are written in terms of task-graphs. In this talk I will provide reflections
on what I believe some of the reasons are, based on the experience gained with
Kokkos adoption in the last decade. To ground the discussion, this talk will pro-
vide an overview of the Kokkos::Graph design - a Kokkos capability that despite
being introduced 4 years ago, has found very little adoption. A comparison with
CUDA Graphs will demonstrate design tradeoffs in this space, and help highlight
adoption hurdles and correctness pitfalls that are likely an important part of the
reason why task-graphs are not more widely used. Last but not least the talk will
touch on how the recently approved ISO C++ 26 Execution framework (Senders
and Receivers) can help overcome some of these adoption hurdles, and allow us to
realize the promise of a task-graph based application design.

12

Type-level invariants for SPMD programming with Rust 20th
10:30 AM–11:00 AM

Nafees Iqbal
University of Colorado Boulder

Rust is a systems programming language that emphasizes memory- and type-safety,
and provides a strong type system. A library or interface is considered "sound" if
this safety cannot be breached without (mis)using the unsafe keyword, but safe code
using sound libraries can still deadlock or yield incorrect results. We consider some
representative bugs arising in parallel software development and explain in terms
of invariant violation. We consider ways of addressing such bugs using Rust’s type
system in the context of the Rust interface for MPI as well as GPU and threaded
programming paradigms with nontrivial data partitions, and give an outlook on
improving the reliability and productivity of parallel software development.

13

Evaluating AI-generated code for C++, Fortran, Go, Java, Julia,
Matlab, Python, R, and Rust20th

11:00 AM–11:30 AM

Patrick Diehl
University of Stuttgart

GPU implementations for algorithms that involve many but fine-grained compute
kernels often struggle with both GPU API overheads and device starvation. One
way to overcome this is kernel fusion. In this work, we aim to compare two distinct
strategies for kernel fusion with SYCL. The first one is using the SYCL graph
extension, which allows developers to record a graph of kernel invocations and launch
the recorded subset as one single kernel upon repetition. The second strategy uses
a task-based runtime system, HPX, and a kernel-fusion executor from the library
CPPuddle. Here, similar kernel invocations are fused into a single kernel on-the-fly
without requiring any graph recording. Instead, this scheme relies on additional
input from the developer and uses other criteria to decide whether to fuse kernels
together during the runtime. Both strategies come with their own upsides and
downsides, as well as different runtime overheads. Thus, in this work, compare both
these solutions to kernel fusion. We focus primarily on the performance using a
sample algorithm, however, we also discuss their usability for different scenarios.

14

Dynamic Resource Management: Comparison of Asynchronous
Many-Task (AMT) and Dynamic Processes with PSets (DPP) 20th

11:30 AM–12:00 PM

Jonas Posner
University of Kassel

Dynamic resource management allows programs running on supercomputers to ad-
just resource allocations at runtime. This dynamism offers potential improvements
in both individual program efficiency and overall supercomputer utilization.

Despite growing interest in recent years, the adoption of dynamic resource man-
agement remains limited due to inadequate support from widely used resource man-
agers, such as Slurm, and programming environments, such as MPI. Furthermore,
developing flexible programs introduces substantially higher programming complex-
ity compared to static programs.

While recent research has improved MPI’s resource flexibility, significant pro-
grammability challenges remain. Additionally, MPI-based solutions rely on low-
level message-passing primitives, which are particularly challenging to use for non-
iterative workloads.

Asynchronous Many-Task (AMT) programming offers a promising alternative to
MPI. By decomposing computations into tasks that are dynamically scheduled by
the runtime system, AMT is well suited to handling irregular and dynamic work-
loads. AMT’s transparent resource management is ideal for dynamic resources,
allowing the runtime system to seamlessly redistribute tasks in response to node
changes without requiring additional programmer effort.

In this work, we compare the "Dynamic Processes with PSets (DPP)" design
principle implemented in an MPI-based environment and the APGAS+GLB AMT
runtime system. We implement benchmarks in both environments to evaluate pro-
grammability and perform experiments on up to 16 nodes to analyze the performance
of static and flexible programs. Results demonstrate that GLB simplifies program-
ming with built-in load balancing and resource flexibility. In contrast, the MPI-DPP
implementation achieves superior performance in handling node changes but at the
cost of increased programming complexity.

15

Unifying the Architecture and Implementation of Task-Aware Libraries20th
1:00 PM–1:30 PM

Amadeu Moya
Barcelona Supercomputing Center

Modern computing platforms require the coordination of CPU, GPU, network, and
storage devices, among others. This heterogeneity forces application developers to
use several APIs to leverage those devices. Tasking models are a promising method
for orchestrating such heterogeneity by serving as the parallelism backbone in those
programs. An application can be represented as a set of direct acyclic graphs (DAG)
where vertices represent tasks comprising CPU computation, GPU offloading, and
I/O operations, and the edges represent the data dependencies between the tasks.

The Task-Aware Libraries (TA-X) is a software ecosystem that allows the tasks of
an application to perform those time-consuming operations efficiently. The ecosys-
tem includes a task-aware library per API supported, such as MPI, CUDA, and I/O.
Each library provides task-aware operations that are linked to the underlying API
and avoid the issues of mixing blocking/non-blocking operations with tasks. Also,
these libraries are supported by any task-based runtime system that implements the
Asynchronous Low-level Programming Interface (ALPI). Underneath, most TA-X
libraries have similar architecture and implementation. However, developing new
TA-X libraries is still tedious and repetitive, which leads to code duplication, in-
creased maintainability, and non-portable performance.

In this paper, we analyze the architectures of the existing TA-X libraries and
propose a high-performance unified design for current and future libraries. With
our design, TA-X libraries share most of the code, and they only have to implement
a small set of API-specific functionalities. This facilitates the rapid and straight-
forward development of novel TA-X libraries, while the ALPI interface facilitates
their portability over task-based runtime systems. On top of that, TA-X libraries
can directly benefit from the optimizations applied to the common components. We
demonstrate the benefits of our design by porting the existing TA-X libraries, which
cover communications, offloading of HPC code and graphic computation to GPUs,
and I/O operations.

16

Data Sparsity in Global and Compact Support Radial Basis Functions
for 3D Unstructured Mesh Deformation 20th

1:30 PM–2:00 PM

Rabab Alomairy
Massachusetts Institute of Technology

We explore the data sparsity characteristics of various commonly used Radial Basis
Function (RBF) kernels in the context of 3D unstructured mesh deformation. While
RBF interpolation is a powerful method for generating high-quality adaptive meshes,
solving the resulting boundary problems leads to large, dense linear systems that are
computationally expensive and memory-intensive due to their cubic complexity. To
address these challenges, we exploit the rank structure of the matrix operators by
employing a Tile Low-Rank Cholesky-based solver, which approximates off-diagonal
matrix tiles up to an application-specific accuracy threshold. Our study compares
global support RBFs and compact support RBFs, focusing on their effects on rank
distribution and numerical accuracy. Using realistic 3D geometries of SARS-CoV-2
viruses from the Protein Data Bank, we evaluate various RBF kernels, analyze the
corresponding matrix rank structures, and assess the backward error resulting from
low-rank approximations for different kernel types. We conduct experiments on
various shared and distributed systems, demonstrating the performance scalability
on massively parallel architectures. Leveraging the Hierarchical Computations on
Manycore Architectures (HiCMA) library and the PaRSEC runtime system, we
show how data sparsity accelerates large-scale mesh adaptation, providing valuable
insights into the balance between computational efficiency and numerical accuracy.

17

A Task-parallel Pipeline Programming Framework with Token
Dependency20th

2:00 PM–2:30 PM

Cheng-Hsiang Chiu
University of Wisconsin at Madison

Task-parallel pipeline framework explores pipeline parallelism in applications and
is critical in many parallel and heterogeneous areas, such as VLSI static timing
analysis and data similarity search. However, existing solutions only deal with
certain types of applications in which data dependency exists between preceding
data and succeeding data in a forward direction. Some applications, such as video
encoding, exhibit data dependency in both forward and backward directions and
cannot be processed with existing solutions. To address the limitation, we introduce
a token dependency-aware pipeline framework. Our framework associates each data
element with a token as its identifier, supports explicit definitions of forward and
backward token dependency with an expressive programming model, resolves token
dependency using simple data structures, and schedules tokens with lightweight
atomic counters. We have evaluated the framework on applications that exhibit
both forward and backward token dependency. For example, our framework is 8.6%
faster than PARSECs implementation in x.264 video encoding applications.

18

GPRat: Gaussian Process Regression with Asynchronous Tasks 20th
3:00 PM–3:30 PM

Alexander Strack
University of Toronto

Python is the de-facto language for software development in artificial intelligence
(AI). Commonly used libraries, such as PyTorch and TensorFlow, rely on paral-
lelization built into their BLAS backends to achieve speedup on CPUs. However,
only applying parallelization in a low-level backend can lead to performance and
scaling degradation. In this work, we present a novel way of binding task-based
C++ code built on the asynchronous runtime model HPX to a high-level Python
API using pybind11. We develop a parallel Gaussian process (GP) library as an
application. The resulting Python library GPRat combines the ease of use of com-
monly available GP libraries with the performance and scalability of asynchronous
runtime systems. We evaluate the performance on a mass-spring-damper system,
a standard benchmark from control theory, with varying number of regressors (fea-
tures). Results show almost no overhead when binding the asynchronous HPX code
using pybind11. Compared to GPyTorch and GPflow, GPRat shows superior scal-
ing on up to 64 cores on an AMD EPYC 7742 CPU for training. Furthermore, our
library achieves a prediction speedup of up to factor 7.63 over GPyTorch and 25.25
over GPflow. If we increase the number of features from eight to 128, we observe
speedups of up to factor 29.62 and 21.19, respectively. These results showcase the
potential of using asynchronous tasks within Python-based AI applications.

19

Julia-Unified Recursive Implementation of TRMM and TRSM for
GPU Acceleration20th

3:30 PM–4:00 PM

Maxwell Onyango
Massachusetts Institute of Technology

This paper presents an innovative approach to implementing the triangular matrix-
matrix multiplication (TRMM) and triangular solve matrix (TRSM) operations
using Julia for GPUs, leveraging the KernelAbstraction.jl framework. TRMM is
crucial in solving systems of equations with triangular matrices, while TRSM is es-
sential for inverting triangular matrices, both forming the backbone of many linear
algebra algorithms. This work is based on an existing recursive implementation for
TRMM and TRSM, which restructures the operations to include general matrix-
matrix multiplication (GEMM) calls. This restructuring reduces memory traffic,
increases data reuse, and enhances concurrency, facilitating better utilization of the
GPU memory hierarchy and reducing latency overhead. The unified implementation
in Julia harnesses the language’s LLVM-based compilation and type inference ca-
pabilities, enabling efficient and hardware-agnostic execution across different GPU
architectures. By supporting a consistent API, this implementation allows users to
seamlessly switch between different GPU backends, achieving performance compa-
rable to vendor-optimized libraries. This portability and performance consistency
make the proposed Julia-native approach ideal for high-performance computing ap-
plications that require adaptable and scalable solutions across heterogeneous com-
puting environments.

20

Keynote III: Chaos to Cosmos: Orchestrating Complex Scientific
Applications with Dynamic Runtime Systems 21th

9:00 AM–10:00 AM

Hatem Ltaief
King Abdullah University of Science and Technology

Scientific computing is increasingly confronted with the challenge of orchestrating
highly complex simulations and AI-driven workflows on heterogeneous hardware sys-
tems. The sheer scale of modern scientific applicationsranging from computational
astronomy to genomic analysis and climate modelingintroduces difficult data depen-
dencies, irregular execution patterns, and severe performance bottlenecks. Tradi-
tional static execution models when faced with complex irregular workflows struggle
to efficiently harness the computational power of emerging hardware architectures,
leading to suboptimal resource utilization and scalability limitations.

In this talk, we explore how dynamic runtime systems provide a paradigm
shift, transforming computational chaos into a structured and efficient cosmos. We
delve into research on task-based programming models, asynchronous execution,
and mixed-precision algorithms, drawing from state-of-the-art developments in the
field. By leveraging dynamic scheduling, data locality optimizations, and adaptive
precision techniques, we demonstrate how these runtime systems mitigate bottle-
necks, improve energy efficiency, and enable unprecedented scalability on modern
supercomputing platforms.

By bridging the gap between numerical methods, system software, and cutting-
edge hardware, this talk provides a roadmap for orchestrating complex scientific
applications with dynamic, intelligent, and scalable runtime systemsturning compu-
tational disorder into scientific discovery.

21

Scalable Block-Sparse Matrix Multiplication Using Template Task
Graphs21th

10:30 AM–11:00 AM

Joseph Schuchart
Stony Brook University

Block-sparse matrix operations are a special case of general sparse algebra where
the matrix is sparsely populated with dense blocks, e.g., in sparse tensor algebra
for quantum chemistry. One of the challenges of implementing distributed matrix
multiplication C = A × B in general is the management of communication flows
since both input matrices A and B are readily available and must be distributed
to the processes computing the relevant blocks of C. In this paper, we propose an
addition to the Template Task Graph programming model that allows applications to
constrain the execution of tasks using a flexible API. We show that such constraints
can be used in a pure dataflow model to replace artificial control flow with a more
structured approach. In the context of sparse matrix multiplication, we found that
constraints allow us to limit the number of concurrent communications and thus
avoid creating a bottleneck in the network.

22

Leveraging Hardware-Aware Computation in Mixed-Precision Matrix
Multiply: A Tile-Centric Approach 21th

11:00 AM–11:30 AM

Qiao Zhang
Saint Louis University

General Matrix Multiplication (GEMM) is a critical operation underpinning a wide
range of applications in high-performance computing (HPC) and artificial intelli-
gence (AI). The emergence of hardware optimized for low-precision arithmetic ne-
cessitates a reevaluation of numerical algorithms to leverage mixed-precision com-
putations, achieving improved performance and energy efficiency. This research
introduces an adaptive mixed-precision GEMM framework that supports different
precision formats at fine-grained tile/block levels. We utilize the PaRSEC run-
time system to balance workloads across various architectures. The performance
scales well on ARM CPU-based Fugaku supercomputer, Nvidia GPU-based A100
DGX, and AMD GPU-based Frontier supercomputer. This research aims to en-
hance computational efficiency and accuracy by bridging algorithmic advancements
and hardware innovations, driving transformative progress in various applications.

23

24

Posters

HPX+MPICH: Bridging the Gap between Asynchronous Many-Task
Systems and MPI with VCIs and Continuation

Jiakunf Yan
University of Illinois Urbana-Champaign

The MPI standard lacks direct support for communication functionalities AMTs
need. Therefore, AMT communication subsystems often resort to significant efforts
to implement their needs using the limited capabilities provided by MPI, leading

to compromises in both programmability and performance. In this work, we study
two of the gaps that have been shown to have large application-level impacts:
efficient management of many pending operations and communication resource

replication. We test existing and newly developed MPICH extensions to see how
well they fit into the AMTs communication model and how much they can

mitigate the aforementioned overheads. They include MPIX Continuation to
efficiently manage a large number of pending communication operations by

introducing a callback-based completion mechanism and MPICHs VCI-mapped
communicators to alleviate thread contention on internal communication resources

by replicating and mapping them to different communicators. The new MPI
parcelport outperforms the existing one and greatly shrinks the performance gap

between the LCI and MPI parcelports. We also identified areas for improvement in
the MPICH extensions.

25

26

Additional information

Addresses

Workshop venue
Busch Student Center, 20 N Grand Blvd, St. Louis, MO 63103

Hotel
Angad Arts Hotel, 3550 Samuel Shepard Dr, St. Louis, MO 63103

Banquet
On campus

27

28

Author Index

Alan Edelman , 3
Alexander Strack , 19
Amadeu Moya , 16
Anthony Cabrera , 11
Aurelien Bouteiller , 5

Cheng-Hsiang Chiu , 18
Christian Trott , 12
Claudia Fohry , 10

Hatem Ltaief , 21

Jiakun Yan , 4
Jonas Posner , 15
Joseph Schuchart , 22

Karame Mohammadiporshokooh , 9

Maxwell Onyango , 20

Nafees Iqbal , 13

Patrick Diehl , 14

Qiao Zhang , 23

Rüdiger Nather , 8
Rabab Alomairy , 17

Shreyas Atre , 6

Vicenc Beltran Querol , 7

Yan Jiakunf, 25

This work is licensed under a Creative Commons
“Attribution-NonCommercial-NoDerivatives 4.0 Inter-
national” license.

29

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

	Welcome Address
	Session Chairs
	Talks
	Keynote I: Improving the HPC experience, did Julia get it right or will AI hide the problem (or both)? (Alan Edelman)
	Contemplating a Lightweight Communication Interface for Asynchronous Many-Task Systems (Jiakun Yan)
	Comparing and Contrasting User and Runtime Directed Data Placement Strategies for Owner-Compute, Multi-Accelerator Distributed Task Based Scheduling (Aurelien Bouteiller)
	Chplx an Asynchronous Many Task Runtime Foundation for Chapel (Shreyas Atre)
	Supporting OpenMP Free Agents by Leveraging the nOS-V Threading Library (Vicenc Beltran Querol)
	Futures in Task Graphs � Extending Taskflow With Dynamic Data Dependencies (Rüdiger Nather)
	Adaptively Optimizing the Performance of HPX's Parallel Algorithms (Karame Mohammadiporshokooh)
	Fail-stop Failure Protection for Coordinated Work Stealing of Tasks that Communicate through Futures (Claudia Fohry)
	Q-IRIS: The Evolution of the IRIS Task-Based Runtime to Enable Classical-Quantum Workflows (Anthony Cabrera)
	Keynote II: Task-Graphs: Why aren't we all using them? (Christian Trott)
	Type-level invariants for SPMD programming with Rust (Nafees Iqbal)
	Evaluating AI-generated code for C++, Fortran, Go, Java, Julia, Matlab, Python, R, and Rust (Patrick Diehl)
	Dynamic Resource Management: Comparison of Asynchronous Many-Task (AMT) and Dynamic Processes with PSets (DPP) (Jonas Posner)
	Unifying the Architecture and Implementation of Task-Aware Libraries (Amadeu Moya)
	Data Sparsity in Global and Compact Support Radial Basis Functions for 3D Unstructured Mesh Deformation (Rabab Alomairy)
	A Task-parallel Pipeline Programming Framework with Token Dependency (Cheng-Hsiang Chiu)
	GPRat: Gaussian Process Regression with Asynchronous Tasks (Alexander Strack)
	Julia-Unified Recursive Implementation of TRMM and TRSM for GPU Acceleration (Maxwell Onyango)
	Keynote III: Chaos to Cosmos: Orchestrating Complex Scientific Applications with Dynamic Runtime Systems (Hatem Ltaief)
	Scalable Block-Sparse Matrix Multiplication Using Template Task Graphs (Joseph Schuchart)
	Leveraging Hardware-Aware Computation in Mixed-Precision Matrix Multiply: A Tile-Centric Approach (Qiao Zhang)

	Posters
	HPX+MPICH: Bridging the Gap between Asynchronous Many-Task Systems and MPI with VCIs and Continuation (Jiakunf Yan)

	Additional information
	Addresses

	Author Index

